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A mathematical model of the process of propagation of oscillations in two-phase 
disperse systems is proposed, taking into account air liberation, and an algo- 
rithm Of numerical integration is obtained. 

In [1-6] results of investigations connected with the behavior of two-phase disperse 
structuredsystems in the case of vibratory actions are presented. 

The aim of the present investigation is the development of a mathematical model of the 
process of propagations of oscillations in two-phase structured disperse systems, where one 
of the phases is liquid and the other gaseous, and the investigation of the laws of this pro- 
cess. 

We shall model a two-phase system in the form of a viscoelastic medium in which there 
propagate vertically directed oscillations according to the law e = --A cosmt, where e is the 
displacement, A is the amplitude of oscillations, m is the angular velocity, and t is time. 

We denote the modulus of elasticity of the two-phase system by E(x, t). 

The variability of the modulus of elasticity confirms that the process of propagation 
of :osciilations takes palce with a continuous variation of the density of the oscillating 
medium, this being a function of the coordinates and time, and leading to a variation of the 
velocity of sound, i.e., the front of the disturbance wave in the process of vibration of 
the sys tern. 

The variable density of the medium and the velocity of sound in the given case are func- 
tions of the nonuniform distribut ion of air concentration in the vibrating structured system. 
The nonuniform distribution in the medium is explained by liberation of the trapped air in 
the vibration process; at the same time, the pattern of distribution of air bubbles in the 
structured system varies with time. 

When developing the mathematical model of propagation of oscillations in two-phase sys- 
tems, we have made the following assumption: the air bubbles are taken as sphere-shaped and 
with the same dimensions which do not change in the process of liberation of bubbles, i.e., 
the density of air inside the bubble is constant. 

In addition, the velocity of motion of an air bubble relative to the system being vi- 
brated has the form [7] 

mg 
Vb= 18v (i) 

We shall assume that before the start of oscillations the distribution of air bubbles in 
the two-phase system at all points will be uniform. In the given case the one-dimensional 
mathematical model of propagation of oscillations has the form [8] 

av c~ a2e a~ 
aT= Ox~ §  . ( 2 )  Ox 2 

The variation of the air bubble concentration during oscillations of the system is de- 
termined from the diffusion equation (of Fokker-Planck) [9] 

aw _ Vb ~ a2w at ~ q- D . (3) Ox z 

*Certain results of this work have been reported at the Seventh All-Union Conference on Col- 
loidal Chemistry and Physicochemical Mechanics in Minsk (1977). 
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The term w(~vb/3X) in Eq. (3) is neglected because of its smallness. 

Thus, the original mathematical model describing propagation of oscillations in the two- 
phase medium has the form 

a v  = c~ a2e a~v + ' 

i 

d'g <4) 
~ I~' �9 

&v = _ vb o~v 02w 

where 

c~=E(x, O/p=var; p--f~(w); c=N(w); v=Wp=var; v=~(A, ~,w). 
The process of numerical integration of system (4) consists of the following; Specify- 

ing the matrix of initial volume concentrations of air bubbles at all nodes of integration 
according to the second equation of system (4), we determine the velocity of the bubble for 
the given node at thegiven instant of time. We then substitute the velocity thus obtained 
into the third equation of system (4) and determine the new value of air concentration at the 
given node after a step of integration with respect to time. 

With the new value of concentration taken into account, we find the velocity of sound, 
themodulus of elasticity, and the coefficient of kinematic viscosity, after which according 
to the first equation of system (4) we determine the rate of displacement of an elemental 
volume of the medium for a new instant of time. All these three equations of system (4) we 
solve simultaneously step after step at all nodes over the height of the column and over time, 
as long as we have not obtained a steady-state process of solution of the vibration equation. 
In the solution process the air concentration at the nodes of the grid of integration tends 
to zero. 

The density of the two-phase medium was determined from the expression p = pZ.ph(l - w), 
and the modulus of elasticity from 

E~,  0 = E/.ph'[l + (El.phfEa) ~l" 

From the values of density and modulus of elasticity thus computed, we determine the 
velocity of sound in the medium: 

c~ .ph 

1+\ ca / P.a ] 

In Eq. (5) instead of E a we have introduced c~p a, while instead of EZ.ph we take 
2 

CZ.phP~.ph, The stability condition of the solution of the first equation of system (4) is 

providea by ~x ~ c~t [9]. 

Physically such a condition is not true, since for one integration step in time the dis- 
turbance wave propagates one integration step along the length, i.e., fulfillment of the 
equality 6x = c6t is necessary. The second termonthe right side of this equation is a vis- 

cosity constituent. 

Viscous friction (internal friction) is friction between layers of the oscillating solid 
medium; therefore, Eq. (2) does not correspond to the physics of the phenomenon under con- 
sideration. It is proposed by us to take ~(dav/dy 2) instead of the second term on the right 
side of Eq. (2). This means that we consider oscillations in the central symmetrical layer 

of a plane problem. 

Then, taking into account the fact that 6x = 6y = c6t, we represent this equation in 

the finite-difference form 

Axe + 6tc2. A~A~e, (6) 

2-- 2-- where A~e = Eo -- 2E2o + Elo; A e = E2+-- 2E2o + E2_; El, E2, E are, respectively, the values 
~. . . X 

of the dlmensxonless dmsplacements per step in time back and per step in time forward. 

The indices +, 0, -- denote the values of the dimensionless displacement per step in 
length forward, at the given node, and per step in length back. For the numerical integra- 
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tion of Eq. (6) we introduce two fictitious layers parallel to and symmetric about the cen- 

tral layer. 

Taking into account the fact that we consider the central layer of a plane problem, 

we assume that the viscous friction in the fictitious layers must be the same, i.e., 
I �9 q 

E2+ = E 2 i  = E 2 o ( 1 - - ~ ) ,  E l +  = E l _  = Elo(1 - - ~ ) ,  (7)  

where u is a coefficient characterizing the measure of friction between the layers; E25, 
E2!, EI~, El! are, respectively, the dimensionless displacements in the fictitious layers 
per step in length forward and back along the y axis for the given instant of time, and per 
step in time back. With the results of [5] taken into account, u = 0.05-0.15. Then Eq. 

(6) assumes the form 

Eo = E2+ + E2_ - - E l o  + 2e-Dl (Elo -- E2o), (8) 

where Dt = ~Kt[2~c 2. 

From the dimensionless displacements we determined thedimensionless velocities accord- 
ing to the formula 

E§ 
U = ,whem 6t = ~t~. 

The finite-difference analog of the third equation of system (4) has the form 

where Do = DmKt/2~c a. 

The indices 0, 2, and 4 of w denote the concentration of air along the height of the 
column, while the index 1 denotes the concentration of air at the given node for the new 
instant of time. 

We denote po = I -- 2Do; p = Do -- Vh/C; q = Do + Vb/C, where, proceeding from the theory 
of Markov processes [i0], po is the measure of transfer of concentration from the zeroth node 
into the same node for the new instant of time; p is the measure of transfer of the concen- 
tration from a node located by a step in height ahead, into the zeroth node for the new time 
instant; q is the measure of transfer of the concentration from a node located by a step in 
height back in relation to the zeroth node, into the zeroth node for the new time instant. 

The condition p < q corroborates the physics of the process of air bubble liberation dur- 
ing propagation of oscillations. 

According to the theory of Markov processes, p + po + q = I, which also follows from (9). 

With the notation adopted, (9) assumes the form 

wt = Wo~ + w2p + w~q. (i0) 

E q u a t i o n  (10)  s e r v e s  f o r  t h e  d e t e r m i n a t i o n  o f  t h e  vo lume  c o n c e n t r a t i o n s  of  a i r  i n  a l l  
n o d e s  e x c e p t  t h e  l o w e r  node  c o r r e s p o n d i n g  t o  t h e  s o u r c e  o f  o s c i l l a t i o n s .  At  t h e  l ower  node  
wl = w2p + wo(po + p ) .  At  t h e  t o p  we i n t r o d u c e  a f i c t i t i o u s  b o u n d a r y  w i t h  z e r o  c o n c e n t r a t i o n ,  
c o r r e s p o n d i n g  to  t h e  node  l o c a t e d  b e y o n d  t h e  f r e e  s u r f a c e  o f  t h e  s y s t e m .  P h y s i c a l l y  t h i s  
means that there is no transfer of air from atmosphere into the disperse system, although in 
reality this phenomenon can be observed to some degree. 

The dimensionless column height H of the two-phase disperse system in which oscillations 
propagate can be determined according to the expression 

I i I \ - 
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Fig. i. Dependence Of variation of the vol- 
ume concentration of air bubbles at the up- 
per node (i) of the grid corresponding to 
the free surface, the dimensionless mean 
density (2), and column height (3) on the 
number of periods of oscillations n. K t = 
20, M = 20; ~ = 0.05; A = 3.5"10 -3 m; ~ = 
i00 sec -I . 
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Fig. 2. Dependence of the dimensionless displacement (i) and velocity (2) at the up- 
per node of the grid corresponding to the free surface, on the number of~periods of 
oscillation. K t = 20; M = 20; ~ = 0.05; A = 3.5.10 -3 m; ~ = iO0 see -I. 

Fig. 3. Dependence of the dimensionless displacement (i) and velocity (2) on the number 

of the node of the grid along height of the column in the case of steady state oscil- 
lations for the 360 ~ phase angle. K t = 20; M = 20; A = 3.5"10 -3 m; m = i00 sec -I. 

• qiWup .~ 

H = 1 ~ ,- ] (ii) 
M ~ Wini '  

where Win i is the initial value of the volume concentration (Win i = 0.i); Wup i, volume con- 
centration at the upper node corresponding to the free surface for the i-th time instant; M, 
Number of nodes of the grid along the height of the column. 

The dimensionless mean density of the two-phase system is 

~= ]--wim (12) 
H 

In the process of propagation of oscillations the dimesionless mean density tends to unity. 

Calculations were carried out according to the algorithm obtained, and the variation of 
the dimensionless height of the column of the disperse system and the mean density and also 
the concentration of air at the nodes of the grid were determined for a variable density of 

the medium and velocity of sound. 

In Fig. i we have shown the variation of concentration w of air bubbles at the upper node 
of the grid :corresponding to the free surface, the dimensionless mean density 0, and the col- 

umn height H dependent on the number n of periods of oscillations. 

Analysis of the data of the figure shows that the variation of the dimensionless mean 
density grows continuously and tends to unity, while the dimensionless height and air bubble 
concentration at the upper node decrease and tend to a constant quantity. 

In Fig. 2 we have represented the dependence of the dimensionless displacement E and the 
velocity u at the upper node of the grid corresponding to the free surface, on the number of 
periods of oscillation. Here derivation of values of these quantities on a computer was car- 
ried out at the end of each period of oscillation. Analysis of these results shows that the 
dimensionless displacement of a point of the medium corresponding to the free surface at the 
end of each period constitutes a fluctuation agreeing with the data presented in [ii]. The 
pattern is symmetric about E =--i. For K t = 20 the pattern of fluctuations is repeated after 
40T, where T is the period of oscillation. The character of variation of the dimensionless 
velocity also constitutes a fluctuation which is asymmetric about zero. These fluctuations 
in the process of oscillation decay, withthe rate of decay depending on the viscosity of the 

system. 

In Fig. 3 we have represented the dependence of the dimensionless displacement and veloc- 
ity on the number of the node along height of the column in the case of steady state oscilla- 
tion for the 360 ~ phase angle. The velocity of sound, density, and viscosity of the medium 

are variables. 
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From analysis of the data in Fig. 3 it is seen that the dimensionless displacements and 
velocities along the height of the column vary according to a periodic law. A comparison of 
these parameters in the case of other phase angles shows that characteristics of their varia- 
tion correspond to the period of fluctuations. 

Thus, the algorithm obtained allows us to investigate the physical relations of the 
process of propagation of oscillations in two-phase disperse systems. 

NOTATION 

Vb, relative bubble velocity; d, bubble diameter, g, acceleration due to gravity; v, 
coefficient of kinematic viscosity; v, velocity of an elemental volume of the medium; x, y, 
coordinates; c, velocity of sound; w, volume concentration of air bubbles; D, diffusion coef- 
ficient; ~, coefficient of dynamic viscosity; p, denSity of the two-phase medium; PZ.ph' den- 
sity of the liquid phase; E~.ph , modulusof elasticity of the liquid phase; Ea, modulus of 
elasticity of air; c~ ph, velocityof sound in the liquid phase; Ca, velocity of sound in 
air; Pa, density of air; ~x, ~y, step of integration along a coordinate; St, step of inte- 
gration in time; ~, a coefficient characterizing the measure of friction between layers; Kt, 
number of time steps per period of oscillation; ~-E, dimensionless step of integration in time. 
Indices: b, bubble; ~.ph, liquid phase ; a, air; uPi, the upper node for the i-th instant of 
time; ini, initial value. 

LITERATURE CITED 

i. B. A. Lishanskii, N. V. Mikhailov, and P. A. Rebinder, "An investigation of the rheo- 
logical properties of disperse structured systems in the case of vibratory displacement," 
Dokl. Akad. Nauk SSSR, 181, No. 6 (1968) 

2. B. A. Lishanskii, B. P. Osmachkin, and N. V. Mikhailov, "An investigation into vibratory 
compaction Of disperse systems," Dokl. Akad. Nauk SSSR, 184, No. 4 (1969). 

3. Z. E. Filer, B. A. Lishanskii, Yu. L. Vorob'ev, and V. K. Presnyakov, "An investigation 
into the process of vibro extrusion flow of disperse systems," Inzh.-Fiz. Zh., 30, No. 
2 (1976). 

4. E. E. Rafales-Lamarka and B. A. Lishanskii, "An investigation into the formation of 
thixotropic structured systems," Inzh.-Fiz. Zh., 27, No. 4 (1974). 

5. E. E. Rafales-Lamarka, A. S. Petrov, and B. A. Lishanskii, "Numerical integration of the 
osillation equation of a viscoelastic medium," Inzh.-Fiz. Zh., 32, No. 6 (1977). 

6. ~. E. Rafales-Lamarka, A. S. Petrov, and B. A. Lishanskii, "On the mechanism of failure 
of structural bonds of vibrocompacted concrete mixtures," Izv. Vyssh. Uchebn. Zaved., 
Stroit. Arkhitek., No. 1 (1979). 

7. H. Lamb, Hydrodynamics, Dover (1932). 
8. L. G. Loitsyanskii, Mechanics of Liquid and Gases, Pergamon (1965). 
9. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], 

Nauka, Moscow (1972). 
i0. B. V. Gnedenko, Theory of Probability, Beckman Publ. (1969). 
ii. F. Crawford, Waves [Russian translation], Nauka, Moscow (1976). 

1157 


