PROPAGATION OF OSCILLATIONS IN TWO-PHASE DISPERSE STRUCTURED SYSTEMS#*

A, S, Petrov, B. A. Lishanskii, UDC 666.015:691.15
and E. E. Rafales-Lamarka

A mathematical model of the process of propagation of oscillations in two-phase
disperse systems is proposed, taking into account air liberation, and an algo~-
rithm of numerical integration is obtained.

In {1-6] results of investigations connected with the behavior of two-phase disperse
structured systems in the case of vibratory actions are presented.

The aim of the present investigation is the development of a mathematical model of the
process of propagations of oscillations in two-phase structured disperse systems, where one
of the phases is liquid and the other gaseous, and the investigation of the laws of this pro-
cess. '

We shall model a two-phase system in the form of a viscoelastic medium in which there
propagate vertically directed oscillations according to the law e = —A coswt, where e is the
displacement, A is the amplitude of oscillations, w is the angular velocity, and t is time.

We denote the modulus of elasticity of the two-phase system by E(x, t).

The variability of the modulus of elasticity confirms that the process of propagation
of ‘oscillations takes palce with a continuous variation of the density of the oscillating
medium, this being a function of the coordinates and time, and leading to a variation of the
velocity of sound, i.e., the front of the disturbance wave in the process of wvibration of
the system.

The variable density of the medium and the velocity of sound in the given case are func-
tions of the nonuniform distribution of air concentration in the vibrating structured system.
The nonuniform distribution in the medium is explained by liberation of the trapped air in
the vibration process; at the same time, the pattern of distribution of air bubbles in the
structured system varies with time.

When developing the mathematical model of propagation of oscillations in two-phase sys-
tems, we have made the following assumption: the air bubbles are taken as sphere-shaped and
with the same dimensions which do not change in the process of liberation of bubbles, i.e.,
the density of air inside the bubble is constant.

In addition, the velocity of motion of an air bubble relative to the system being vi-
brated has the form [7]
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- We shall assume that Before the start of oscillations the distribution of air bubbles in
the two-phase system at all points will be uniform. In the given case the one-dimensional
mathematical model of propagation of oscillations has the form [8]
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The variation of the air bubble concentration during oscillations of the system is de-
termined from the diffusion equation {(of Fokker—Planck) [9]
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*Certain results of this work have been reported at the Seventh All-Union Conference on Col-
loidal Chemistry and Physicochemical Mechanics in Minsk (1977).
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The term w(dvp/9x) in Eq. (3) is neglected because of its smallness.

Thus, the original mathematical model describing.propagation of oscillations in the two-
phase medium has the form
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where
@ =E(x, fifp=var; p=fi(w) c=f@; v=pp=Var; v=f(4 o, ).

The process of numerical integration of system (4) consists of the following: Specify-
ing the matrix of initial volume concentrations of air bubbles at all nodes of integration
according to the second equation of system (4), we determine the velocity of the bubble for
the given node at the given instant of time. We then substitute the velocity thus obtained
into-the third equation of system (4) and determine the new value of air concentratiom at the
given node after a step of integration with respect to time.

With the new value of concentration taken into account, we find the velocity of sound,
the modulus of elasticity, and the coefficient of kinematic viscosity, after which according
to the first equation of system (4) we determine the rate of displacement of an elemental
volume of the medium for a new instant of time. All these three equations of system (4) we
solve simultaneocusly step after step at all nodes over the height of the column and over time,
as long as we have not obtained a steady-state process of solution of the vibration equation.
In the solutlon process the air concentration at the nodes of the grid of 1ntegrat10n tends
to zero.

The den51ty of the two-phase medium was determlned from the expression p pz_ph(l -w,
and the modulus of elasticity from

E(x, f)=E, ph'il + (EZ ph/E ) Wl

From the values of density and modulus of elast1c1ty thus computed we determlne the

velocity of sound in the medium: : 2
; : C
: @ — 1.ph (5)
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2 In Eq. (5) instead of E; we have introduced capa, while instead of E7, ph we take
c7,phPl,phs The stability condltlon of the solution of the first equation of system (4) is
prov1dea by §x = cbt [9].

Physically such a condition is not true, since for one 1ntegrat10n step. in time the dis—
turbance wave propagates one integration step along the length, i.e., fulfillment of the
equality éx = cft is necessary. The second term onthe right side of this equation is a vis-
cosity constituent. :

Viscous friction (internal friction) is frlctlon between layers of the oscillating solid -
medium; therefore, Eq. (2) does not correspond to the physics of the phenomenon under con-
sideration. It is proposed by us to take v(d®v/dy®) instead of the second term on the right
side of Eg. (2). This means that we consider oscillations in the central symmetrical layer
of a plane problem.

Then, taking into account the fact that 8x = 8y = clt, we represent this equation in
the finite-difference form

A,e_A2e+ AtAge9 (6)

where Ate = Eo — 2E20 + Elo; Ale = E24 — 2E2, + E2_, El, E2, E are, respectively, the values
of the dimensionless dlsplacements per step in time back and per step in time forward.

The indices +, 0, — denote the values of the dimensionless displacement per step in
length forward, at the given node, and per step in length back. For the numerical integra-
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tion of Eq. (6) we introduce two fictitious layers parallel to and symmetric about the cen-
tral layer.

Taking into account the fact that we consider the central layer of a plane problem,
we assume that the viscous friction in the fictitious layers must be the same, i.e.,

E2) = E2” =E2(1—0a), El.=FE1_ =Ely(l—a), (7

where a is a coefficient characterizing the measure of friction between the layers; E2},
E2!, E1', E1! are, respectively, the dimensionless displacements in the fictitious layers
petr step in length forward and back along the y axis for the given instant of time, and per
step in time back. With the results of [5] taken into account, a = 0.05-0.15. Then Eq.
(6) assumes the form

Ey= E2, -+ E2_—Ely+ 2aD,(Ely — E2)), (8)
where D; = vat/2nc2.

From the dimensionless displacements we determined the dimensionless velocities accord-
ing to the formula
we LB nere 6 = to.
28¢ .

The finite-difference analog of the third equation of system (4) has the form

wy, = wy(l — 2Dy) + w, (Do - “?‘3') 4w, (Do+ Ecb—) ’ ‘ {9)
where Do = DuK¢/2mc?.

The indices 0, 2, and 4 of w denote the concentration of air along the height of the
column, while the index 1 denotes the concentration of air at the given node for the new
instant of time,

We denote po = 1 — 2Do; p = Do — Vp/€; g = Do + vy, /c, where, proceeding from the theory
of Markov processes [10], po is the measure of transfer of concentration from the zeroth node
into the same node for the new instant of time; p is the measure of transfer of the concen~
tration from a node located by a step in height ahead, into the zeroth node for the new time
instant; q is the measure of tramsfer of the concentration from a node located by a step in
height back in relation to the zeroth node, into the zeroth node for the new time instant.

The condition p < q corroborates the physics of the process of air bubble liberation dur-
ing propagation of oscillations.

According to the theory of Markov processes, p + po + q = 1, which also follows from (9).
With the notation adopted, (9) assumes the form
Wy == WyPy + Wep -+ WG (10)

Equation (10) serves for the determination of the volume concentrations of air im all
nodes except the lower node corresponding to the source of oscillations. At the lower node
Wi = w2p + Wwo(po + p). At the top we introduce a fictitious boundary with zero concentration,
corresponding to the node located beyond the free surface of the system. Physically this
means that there is no transfer of air from atmosphere into the disperse system, although in
reality this phenomenon can be observed to some degree.

The dimensionless column height H of the two-phase disperse system in which oscillations
propagate can be determined according to the expression

HB| wy Fig. 1. Dependence of variation of the vol-
}0 or P ume concentration of air bubbles at the up-
1 — 3 per node (1) of the grid corresponding to
the free surface, the dimensionless mean
— density (2), and column height (3) on the
- \ number of periods of oscillations n. K; =

99 20, M = 203 o = 0.05; A = 3.5-10"% m; w
g 8 B 2 32 4«0 48 56 100 sec~l!.

]
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 Fig. 2. Dependence of the dimensionless displacement (1) and velocity {2) at -‘the up~-
per node of the grid corresponding to the free surface, on the number of.periods of
oscillation. K¢ = 20; M = 203 « = 0.05; A = 3.5-107° m; & = 100 sec™’

Fig. 3. Dependence of the dimensionless displacement (1) and velocity (2) on the number
of the node of the grid along height.of the column in the case of steady state oscil-
lations for the 360° phase angle. K¢ = 20; M = 20; A = 3.5°107% m; w = 100 sec™’.

(11)

where wipj is.the initial value of the volume concentration (winj = 0.1); wyp;» volume con-
centration at the upper node corresponding to the free surface for the i-th time instant; M,
pumber of nodes of the grid along the height of the column.

The dimensionless mean density of the two-phase system is

1 —wip
—

In the process of propagation of oscillations the dimesionless mean density tends to unity.

p = (12)

Calculations were carried out according to the algorithm obtained, and the variation of
the dimensionless height of the column of the disperse system and the mean density and also
the concentration of air at the nodes of the grid were determined for a variable density of
the medium and velocity of sound.

In Fig. 1 we have shown the variation of concentration w of air bubbles at the upper node
of the grid corresponding to the free surface, the dimensionless mean density p, and the col-
umn height H dependent on the number n of periods of oscillations.

Analysis of the data of the figure shows that the variation of the dimensionless mean
density grows continuously and tends to unity, while the dimensionless height and air bubble
concentration at the upper node decrease . and tend to a constant quantity.

In Fig. 2 we have represented the dependence of the dimensionless displacement E and the
velocity u at the upper node of the grid corresponding tothe freesurface, onthe number of
periods of oscillation.  Here derivation of values of these quantities on a computer was car-
ried out at the end of each period of oscillation. Analysis of these results shows that the
dimensionless displacement of a point of the medium corresponding to the free surface at the
end of each period constitutes a fluctuation agreeing with the data presented in [11]. The
pattern is symmetric about E = —1. For Ky = 20 the pattern of fluctuations is repeated after
40T, where T is the period of oscillation. The character of variation of the dimensionless
velocity also constitutes a fluctuation which is asymmetric about zero. These fluctuations
in the process of oscillation decay, withthe rate of decay depending on the viscosity of the
system.

In Fig. 3 we have represented the dependence of the dimensionless displacement and veloc-
ity on the number of the node along height of the column in the case of steady state oscilla-
tion for the 360° phase angle. The velocity of sound, density, and viscosity of the medium
are variables.

1156



From analysis of the data in Fig. 3 it is seen that the dimensionless displacements and
velocities along the height of the column vary according to a periodic law. A comparison of
these parameters in the case of other phase angles shows that characteristics of their varia-
tion correspond to the period of fluctuationms.

Thus, the algorithm obtained allows us to investigate the physical relations of the
process of propagation of oscillations in two-phase disperse systems.

NOTATION

vh, relative bubble velocity; d, bubble diameter, g, acceleration due to gravity; v,
coefficient of kinematic viscosity; v, velocity of an elemental volume of the medium; x, vy,
coordinates; c, velocity of sound; w, volume concentration of air bubbles; D, diffusion coef-
ficient; u, coefficient of dynamic viscosity; p, density of the two-phase medium; pj .;, den~
sity of the liquid phase; Ej ph, modulusof elasticity of the liquid phase; E,, modulus of
elasticity of air; c7 ,p, velocityof sound in the liquid phase; c,, velocity of sound in
air; pay, density of air; &x, 8y, step of integration along a coordinate; 8t, step of inte~
gration in time; a, a coefficient characterizing the measure of friction between layers; Kg,
number of time steps per period of oscillation; §t, dimensionless step of integration in time.
Indices: b, bubble; Z.ph, liquidphase; a, air; up;, the upper node for the i-th instant of
time; ini, initial value.
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